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Abstract. In this paper bearing the same title as our earlier survey-paper [11] we pursue the goal of
characterizing the global solutions of an optimization problem, i.e. getting at necessary and sufficient
conditions for a feasible point to be a global minimizer (or maximizer) of the objective function.
We emphasize nonconvex optimization problems presenting some specific structures like ‘convex-
anticonvex’ ones or quadratic ones.
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1. Introduction

Consider the optimization problem which consists in minimizing the objective
functionf over the constraint setS. A global minimizerx̄ of f on S is a feasible
point (x̄ ∈ S) such thatf (x̄) 6 f (x) for all x ∈ S. Our aim in the present
paper, like in a previous one under the same title [11], is to derivecharacteriza-
tionsof suchx̄. We review results in that direction discovered since the period of
preparation of [11], emphasizing those concerning nonconvex optimization prob-
lems which present some specific structures in their formulations. The choice of
results we describe reflects unavoidably our interests in this particular area of
optimization.

A natural step towards characterizations of global minimizers in an optimization
problem is to complete (if possible !) classical conditions for local optimality (like
the Karush–Kuhn–Tucker’ ones) with some ‘global conditions’: for example in
the problem of minimizing a concave quadratic function over a polyhedron [1,
Theorem 2] or in the chemical and phase equilibrium problem [15, Section 3], [18,
Section 3]. In some problems local minimizers turn out to be global ones [8]. Here
we however focus our attention on more general problems, following the scheme
developed in [11]. The paper is divided into three parts. In Section 2 we review
some recent results on higher order optimality conditions in unconstrained differen-
tiable optimization. Although these conditions still deal with local optimization, we
believe they can help to detect solutions of the given optimization problem among
those satisfying usual first and second-order conditions for optimality. Section 3
is along the lines of Section 3 in [11]. We consider there optimization problems
presenting what we call some ‘convex–anticonvex’ structure: convexity is present
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twice, but once in the wrong (or reverse) way. The three typical classes of problems
in that respect are:

(P1) Maximize a convex function over a convex set (convex maximization);

(P2) Minimize (or maximize) a difference of convex functions
(diff-convexor d.c. optimization);

(P3) Minimize a convex function subject tog(x) > 0, whereg is a convex function
(reverse convex minimization).

Conditions for global optimality in such problems fall into two classes: those using
the subdifferential of the objective function at the candidate pointx̄ and enlarge-
ments of this subdifferential calledε−subdifferentials, and those appealing to the
subdifferential of the objective function at all points at the same level asx̄. Section
3 is entirely devoted to such types of conditions for global optimality in problems
(P1), (P2) or (P3), by completing those derived in [11, Section 3] and setting
some unsolved questions. In Section 4 we move into a particular world, the one
where ‘everything is quadratic’. When all the data of the optimization problem are
quadratic (but not necessarily convex quadratic), all the informations concerning
them are contained in the first and second-order differentials at any point, so that
we can expect to obtain peculiar (global) optimality conditions. This is true to a
certain extent, but even in this very specific area of optimization, there are more
unsolved problems than well-understood situations.

Throughout we assume for simplicity that the underlying space is an Euclidean
one, say IRn equipped with the standard inner product denoted by〈., .〉 and the
associated norm denoted by‖.‖.

2. Higher order optimality conditions in differentiable optimization

Let O be an open subset of IRn andf : O → IR. We consider a point̄x ∈ O
at whichf admits differentials of any order. We denote byDpf (x̄) thep-th dif-
ferential off at x̄. Higher order optimality conditions consist in necessary and/or
sufficient conditions for the optimality of̄x appealing to theDpf (x̄)with p greater
than the usualp = 2.

Let us begin by recalling some basic facts concerning the symmetric multilinear
forms, especiallyDpf (x̄).

Given a symmetric multilinear (p-linear) formP : IRn × · · · × IRn︸ ︷︷ ︸
p-times

→ IR, the

knowledge ofP on H × · · · ×H︸ ︷︷ ︸
p-times

, whereH is a subspace of IRn, amounts to

the knowledge ofP on the “diagonal part” ofH × · · · × H , i.e. on1(H) :=
{(d, . . . , d) | d ∈ H }. Indeed there are at least two ways of recoveringP onH ×
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· · · ×H from P on1(H): for all (d1, . . . , dp) ∈ H × · · · ×H ,

P
(
d1, . . . , dp

) = 1

2pp!
∑

(ε1,... ,εp)∈{−1,+1}p
ε1 · · · εpP̃ (ε1d

1+ · · · + εpdp),

(2.1)

P
(
d1, . . . , dp

) = (−1)p

p!
p∑
k=1

(−1)k
∑

1≤i1<···<ik≤p
P̃ (di1 + · · · + dik ), (2.2)

whereP̃ (u) stands forP(u, . . . , u).
For the symmetric bilinear formsB : IRn × IRn → IR, the above polarization

formulas give the classical ones below:

B(u, v) = 1

4
[B(u+ v, u+ v)− B(u− v, u− v)],

B(u, v) = 1

2
[B(u+ v, u+ v)− B(u, u)− B(v, v)].

The set of symmetricp−linear formsP : IRn × · · · IRn → IR is a vector space of

dimension
(
p + n− 1
n− 1

)
.

Concerning the symmetricp-linear formDpf (x̄) : IRn × · · · × IRn → IR, its
expression on the diagonal part1(IRn) of IRn is given via all the partial derivatives
of orderp of f at x̄: for all d = (d1, . . . , dn) ∈ IRn,

Dpf (x̄) (d, . . . , d) =
(2.3)∑

(α1, . . . , αn) ∈ INn
α1+ · · · + αn = p

p!
α1! · · · αn!

∂pf

∂x
α1
1 · · · ∂xαnn

(x̄) d
α1
1 · · · dαnn .

Only expressions of this type are used for example in Taylor–Young expansions of
f (x̄ + td) from x̄.

Suppose now we are at a critical (or stationary) pointx̄ of f , i.e. a pointx̄ ∈ O
at whichDf (x̄) = 0. We set:

m := min
{
p ≥ 2 | Dpf (x̄) 6= 0

}
. (2.4)

If there is nop ≥ 2 such thatDpf (x̄) 6= 0, we are caught in a trap and we have no
optimality condition to propose. . . . We therefore assume that there is ap ≥ 2 for
whichDpf (x̄) 6= 0, so that them defined in (2.4) is finite.

The classical higher order optimality conditions take the following form.
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THEOREM 2.1

(a) If x̄ is a local minimizer off , thenm is even, saym = 2k with k ≥ 1, and

D2kf (x̄) (d, . . . , d) ≥ 0 for all d in IRn. (2.5)

(b) If m is even,m = 2k with k ≥ 1, and

D2kf (x̄) (d, . . . , d) > 0 for all non-null d in IRn, (2.6)

thenx̄ is a strict local minimizer off .

Form = 2 we recognize the usual second-order optimality conditions. The higher
order necessary condition (2.5) and sufficient condition (2.6) appeal to the sign of
P̃ (d1, . . . , dn) := D2kf (x̄) (d, . . . , d), a polynomial function of then variables
d1, . . . , dn which is homogeneous of degree 2k. Unfortunately there is no easy way
(like the spectral theory for 2k = 2) to test the positivity of̃P on IRn. Consequently,
apart from some particular situations in polynomial optimization, the optimality
conditions of Theorem 2.1 are rarely used in Optimization.

EXAMPLE 2.2 Consider the particular case wheren = 1. Given an objective
functionf : I → IR defined on the open intervalI , a critical point x̄ ∈ I of f , we
assume there is ap > 2 such thatf (p)(x̄) 6= 0. Settingm as the smallest integer
p for whichf (p)(x̄) 6= 0, the sufficient condition in Theorem 2.1 says that ifm is
even, saym = 2k with k > 1,(

f (2k)(x̄) > 0
)⇒ (x̄ is a strict local minimizer off ) .

We can complement this sufficient condition as follows: ifx̄ is the only critical point
of f on I , then(

f (2k)(x̄) > 0
)⇒ (x̄ is a strict global minimizer off on I ) . (2.7)

But this is no more true forn ≥ 2: we may havef : IR2 → IR with only one
critical point x̄ at whichD2f (x̄)(d, d) > 0 for all non-nulld in IR2 (hencex̄ is
a strict local minimizer off ) and stillf is unbounded from below (f (x1, x2) =
2x3

1 + 3e2x2 − 6x1e
x2 is such an example [12, p. 53].

As mentioned earlier, fromm = 2, Theorem 2.1 says nothing more than what
is known from the usual second-order optimality conditions: ifx̄ is a critical point
of f for whichD2f (x̄) 6= 0, then

(x̄ is a local minimizer off ) ⇒ (D2f (x̄)(d, d) > 0 for all d ∈ IRn,

and
D2f (x̄)(d, d) > 0 for some
non-nulld ∈ IRn);(

D2f (x̄)(d, d) > 0 for all
non-nulld ∈ IRn

)
⇒ (x̄ is a strict local minimizer off ) .
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The situation where the non-null quadratic formD2f (x̄) is positive semidefinite
but not positive definite is of a particular importance in Optimization: we are in a
state of uncertainty about the minimalityof x̄, the necessary condition for mini-
mality is satisfied but the sufficient condition for (strict) minimality is not satisfied.
We therefore examine further this case. Expressed in terms of eigenvalues, the
uncertainty case we are considering is as follows:D2f (x̄) is positive semidefinite
and singular, but not zero. We put

H := KerD2f (x̄). (2.8)

Under the assumptions we have just made,H is neither reduced to{0} nor the
whole IRn.

By making use of a fourth-order Taylor–Young expansion off (x̄ + tu) from
x̄ we easily get at the following third and fourth-order necessary condition for
minimality:

D3f (x̄)(u, u, u) = 0 for all u ∈ H, (2.9)

D4f (x̄)(u, u, u, u) ≥ 0 for all u ∈ H. (2.10)

These conditions, however, are not very informative. There is another third- and
fourth-order necessary condition (or sufficient condition) for minimality, sharper
than (2.9), (2.10), which is due to Dedieu [2] and improved by Dedieu and Janin
[3].

THEOREM 2.3 ([3]). Let x̄ be a critical point off at which we are in a state of
uncertainty about its minimality (i.e.D2f (x̄) is positive semidefinite and singular
but not zero). Then:

(a)
If x̄ is a local minimizer off , we necessarily have:
D3f (x̄)(u, u, u) = 0 for all u ∈ H (2.11)
and

D4f (x̄)(u, u, u, u).D2f (x̄)(v, v)− 3
[
D3f (x̄)(u, u, v)

]2 ≥ 0 (2.12)
for all u ∈ H andv ∈ H⊥

(b) If (2.11) holds true and if the strict inequality holds in(2.12) for all 0 6=
u ∈ H and0 6= v ∈ H⊥ (recall thatH 6= IRn), thenx̄ is a strict local minimizer
of f .

The proof of these results is based upon fourth-order Taylor–Young expansions
of f from x̄ along ‘parabolic paths’̄x + tu+ t2v instead of ‘linear paths’.

By choosing a non-nullv in H⊥ (thus verifyingD2f (x̄)(v, v) > 0), we see
how (2.12) implies (2.10). Note also that (2.12) is homogeneous of degree six so
that we can restrict ourselves tou andv with norm one.
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EXAMPLE 2.4 Conditions(2.11) and (2.12) are easier to check once one has
carried out a linear change of variables through an orthogonal transformation
diagonalizing the Hessian matrix representingD2f (x̄). Suppose for examplen =
2, x̄ is a critical point off at whichD2f (x̄) =

[
0 0
0 λ

]
, with λ = ∂2f

∂x2
2

(x̄) > 0.

Then(2.11)and (2.12)amount to

∂3f

∂x3
1

(x̄) = 0 and
∂2f

∂x2
2

(x̄)
∂4f

∂x4
1

(x̄)− 3
(

∂3f

∂x2
1∂x2

(x̄)

)2

≥ 0. (2.13)

To go further with this example, suppose that

f : x = (x1, x2) ∈ IR2 7→ f (x) := (x2− ϕ(x1)) (x2− ψ(x1)) , (2.14)

whereϕ andψ are functions of the real variable satisfying{
ϕ(0) = ψ(0) = 0, ϕ′(0) = ψ ′(0) = 0
ϕ′′(0) 6= ψ ′′(0). (2.15)

Then, calculatingD2f (x̄), D3f (x̄) andD4f (x̄) at the critical pointx̄ = (0,0) of
f leads to

D2f (x̄) =
[

0 0
0 2

]
,

∂3f

∂x3
1

(x̄) = 0,

while

∂2f

∂x2
2

(x̄).
∂4f

∂x4
1

(x̄)− 3
(

∂3f

∂x2
1∂x2

(x̄)

)2

= −3
[
ϕ′′(0)− ψ ′′(0)]2 < 0.

Thus, according to the first part of Theorem 2.3,x̄ is not a local minimizer off
(which could not have been decided by using the second-order optimality condi-
tions). The famous counterexample by Peano is thef in (2.14) with ϕ(x1) = x2

1
andψ(x1) = 3x2

1.

We summarize below the process for deciding whether the critical pointx̄ is a
local minimizer off or not by calling higher order conditions: with the integerm
defined in (2.4):

– If m is odd,x̄ cannot be a local minimizer.
– If m is even, we distinguish two cases:

m ≥ 4 m = 2

By using Theorem 2.1, decide
Yes or No or remain uncertain.

• By using Theorem 2.1, decide
Yes or No or remain uncertain.

• If uncertain, by using Theorem
2.3, decide Yes or No or remain
uncertain.
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At this stage several questions arise:

– Are there fifth and sixth-order (or, more generally,(2p)-th and(2p + 1)-th-
order) optimality conditions in the same vein as those in Theorem 2.3, which
would allow to sharpen what is known form ≥ 4 and therefore reduce the
range of uncertainty?

– Whenm = 2 could we even sharpen optimality conditions of Theorem 2.3 in
order to reduce more the range of uncertainty?

Even by answering these questions we are far from conditions for global optimal-
ity. Another question we would pose in that direction is: given a polynomial (or,
more generally, an analytic) objective functionf , how to decide in view of the
coefficientsai of f (which fully determinef ) whether a critical point off is a
(global) minimizer off or not?

3. Global optimality in ‘convex-anticonvex’ optimization

3.1. GLOBAL MINIMIZER VS . LOCAL MINIMIZER

We begin with a general result which explains the philosophy we are going to
develop essentially: given a pointx̄ which is candidate for being a global minimizer
of f , look at the other pointsx at the same level as̄x for f (i.e. satisfyingf (x) =
f (x̄)).

THEOREM 3.1 LetS ⊂ IRn be arcwise connected and letf : S → IR be contin-
uous onS. Then the following assertions concerningx̄ ∈ S are equivalent:

(i) x̄ is a global minimizer off onS.
(ii) Everyx in S at the same level as̄x for f is a local minimizer off onS.

Proof. Only [(ii)⇒ (i)] needs a proof. We proceed by contradiction: assum-
ing (ii), we suppose that̄x is not a global minimizer off on S. Let therefore
u ∈ S be such thatf (u) < f (x̄). SinceS is arcwise connected,u and x̄ can be
joined by a continuous path ofS: there exists a continuousσ : [0,1] → S with
σ(0) = u and σ(1) = x̄. Defineϕ : t ∈ [0,1] 7→ ϕ(t) := f (σ (t)) and set
Sϕ := {t ∈ [0,1] : ϕ(t) = f (x̄)}. ThenSϕ is nonempty (because 1∈ Sϕ), closed
(sinceϕ is continuous), and bounded from below. We sett0 as the largest lower
bound ofSϕ; then t0 ∈ Sϕ and 0< t0 ≤ 1. The pointσ(t0) is (in S) at the same
level asx̄ for f , hence it is by assumption a local minimizer off ; consequentlyt0
is a local minimizer ofϕ: there existsη > 0 such that( |t − t0| ≤ η

t ∈ [0,1]
)
⇒ (ϕ(t) ≥ ϕ(t0)) .
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Sincet0 is the lower bound ofSϕ, we deduce from above:(
t0− η < t < t0

0< t

)
⇒ (ϕ(t) > ϕ(t0)) .

Let us choose such at , call it t1. Thenϕ(1) = ϕ(t0) ∈ [ϕ(0), ϕ(t1)] so that there
existst2 ∈ [0, t1] such thatϕ(t2) = ϕ(1) (= f (x̄)). Thust2 ∈]0, t1] ∩ Sϕ, and since
t1 < t0 this contradicts the definition oft0 as the lower bound ofSϕ. 2

As in all characterization theorems, Theorem 3.1 can be read in its negative
form: let x̄ be a local minimizer off on S; thenx̄ is not a global minimizer off
onS if and only if there existsx ∈ S, x 6= x̄, at the same level as̄x for f which is
not a local minimizer off onS. This kind of result could explain why some global
minimization procedures like the so-called ‘tunneling method’ [16] are expected to
lead to a global minimizer: move in a first phase to a local minimizerx̄1 of f , find
in a second phase a pointx̄2 6= x̄1 at the same level as̄x1 for f , then apply again a
local minimization process from̄x2.

3.2. CONVEX MAXIMIZATION AND D .C. OPTIMIZATION

It is tempting to try to weaken condition (ii) in Theorem 3.1 by substituting ‘Every
x in S at the same level as̄x for f satisfies first-order minimality conditions’ for
(ii). This is grossly false as simple (unconstrained) minimization problems show.
The situation however is not hopeless for minimization problems with more struc-
ture. Here enter the so-called ‘convex-anticonvex’ models; by this name we mean
minimization problems where convexity is present twice, but once in the wrong (or
reverse) way. The first two typical classes of problems in that respect are:

(P1) Maximize a convex function over a convex set (convex maximization);
(P2) Minimize (or maximize) a difference of convex functions over a closed con-

vex set (this problem is calledd.c. optimization).

Consider the first class of problems(P1): maximize a convex functionf over a
convex setC. The first-order optimality condition atx ∈ C for such a problem can
be written as follows: ‘Df (x) is normal toC at x’ (assumingf is differentiable
at x). This is satisfied at a local maximizerx̄ of f on C but, more interesting,
its extension to all thex in C which lie at the same level as̄x for f yields a
characterization of a global maximizerx̄ of f on C. The statement below which
improves an earlier result by Strekalovsky (see [11] and references therein) gives
such a characterization.

For a convexf : IRn→ IR we denote by∂f (x) the subdifferential off atx; for
a convex setC ⊂ IRn andx ∈ C we denote byN(C, x) the normal cone toC atx.

THEOREM 3.2 ([13]). Supposef : IRn → IR is convex andC ⊂ IRn is closed
convex. Consider a point̄x ∈ C such that−∞ ≤ inf

C
f < f (x̄). Thenx̄ is a global
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maximizer off onC if and only if:

∂f (x) ⊂ N(C, x) for all x in C satisfyingf (x) = f (x̄). (3.1)

Another type of conditions for global optimality in such a class of problems(P1)

was provided earlier by the author [10] by using the so-calledε-subdifferentials
∂εf (x̄) of f at x̄ and the setsNε(C, x̄) of ε-normal directions toC at x̄ (see [14,
Chapter XI] for properties of such objects): more precisely,

x̄ is a global maximizer off onC if and only if
∂εf (x̄) ⊂ Nε(C, x̄) for all ε > 0.

(3.2)

A way of linking directly (3.1) and (3.2) has recently been shown in [4, Section
2]. This strategy of usingε-subdifferentials of convex functions andε-normal
directions to convex sets is also followed in [9] for some further nonconvex mini-
mization problems involving the pointwise minimum of sublinear functions.

The two classes of problems(P1) and(P2) are known to be ‘equivalent’ in the
sense that one can easily transform either of them in such a way that it is structured
as the other one. It is therefore natural to ask for global optimality conditions for
(P2) parallel to those obtained for(P1) in Theorem 3.2. But here I must confess
that what has been derived in that respect is unsatisfactory to me.

Let the objective functionf be a d.c. one, i.e. of the following form:f =
g−h, whereg : IRn→ IR∪{+∞} is a lower-semicontinuous convex function (not
identically equal to+∞) andh : IRn→ IR is a convex function. We are tempted to
propose the following assertion, which parallels the one displayed in Theorem 3.2
for (P1): x̄ is a global minimizer off = g − h on IRn if and only if

∂h(x) ⊂ ∂g(x) for all x satisfyingf (x) = f (x̄). (3.3)

This is false, not only because simple counterexamples exist but also because (3.3)
is symmetrical, at least when bothg andh are differentiable: for differentiableg
andh, (3.3) boils down to

Dg(x)−Dh(x) = Df (x) = 0 for all x satisfyingf (x) = f (x̄). (3.3′)

Hence, for such functions, conditions for global minimality ofx̄ and global maxi-
mality of x̄ would be the same!

A common way to transform(P2) into a problem structured like(P1) is as
follows. Consider(

P̂1
)

Maximize ĥ(x, α) := h(x) − α subject to(x, α) ∈ Ĉ, whereĈ :=
{(x, α) ∈ IRn × IR | g(x)− α ≤ 0}.

Then:

(x̄ solves(P2))⇒
(
(x̄, g(x̄)) solves

(
P̂1
)) ;

(
(x̄, ᾱ) solves

(
P̂1
))⇒ (ᾱ = g(x̄) andx̄ solves(P2)) .
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What if we plug the result of Theorem 3.2 into the format
(
P̂1
)

of (P2)? This has
been done by Strekalovsky [25, Section 2]: we provide below a slight improvement
of the subsequent statement and a direct proof of it.

THEOREM 3.3 Under the assumptions above onf = g − h, x̄ is a global
minimizer off on IRn if and only if the following holds:

(C)


For all (r, x) ∈ IR× IRn satisfying
r − h(x) = g(x̄)− h(x̄) andr ≥ g(x), (3.4)
we must have
g(x′) ≥ r + 〈x∗, x′ − x〉 for all x′ ∈ IRn andx∗ ∈ ∂h(x). (3.5)

Proof.

– Condition(C) is necessary.

Let (r, x) satisfy (3.4). Since

g(x′)− h(x′) ≥ g(x̄)− h(x̄) for all x′,

g(x′)− h(x′) ≥ r − h(x) for all x′,

that is

g(x′) ≥ r + h(x′)− h(x) for all x′.

Now,h(x′)− h(x) ≥ 〈x∗, x′ − x〉 wheneverx∗ ∈ ∂h(x). Whence (3.5) is deduced.

– Condition(C) is sufficient.

Let x be arbitrarily chosen in IRn; we want to prove thatf (x) ≥ f (x̄). We set
r := h(x)+ g(x̄)− h(x̄) and distinguish two cases:r ≤ g(x), r > g(x).
If r ≤ g(x), according to the definition above ofr, we get

g(x̄)− h(x̄) ≤ g(x)− h(x).
If r > g(x), it follows from (3.5):

g(x′) ≥ h(x)+ g(x̄)− h(x̄)+ 〈x∗, x′ − x〉 (3.6)

for all x′ ∈ IRn andx∗ ∈ ∂h(x). It then suffices to letx′ = x in (3.6) to obtain the
desired inequality. 2

Condition(C) bears a resemblence to (3.3): (3.3) is condition(C) restricted to
the r equallingg(x). The difference between (3.3) and(C) is the presence of an
additional parameterr, and we know it cannot be completely removed. We can
however get rid of ther by implicitly including them in the values taken byf , with
the aim to present a necessary and sufficient condition for global minimality in d.c.
optimization bearing the spirit of (3.3) and which is nicer than(C).
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THEOREM 3.4 Under the assumptions of Theorem 3.3 onf = g − h:

(a) If x̄ is a global minimizer off on IRn, then ∂h(x) ⊂ ∂g(x) for all x
satisfyingf (x) = f (x̄);

(b) If x̄ is not a global minimizer off on IRn, there then existsx satisfying
f (x) ≤ f (x̄) for which∂h(x) is not included in∂g(x).

Proof.Only (b) needs a proof. Let̄x not be a global minimizer off on IRn; then,
according to Theorem 3.3, for some(r, x) satisfyingr − h(x) = g(x̄)− h(x̄) and
r ≥ g(x), there existsx∗ ∈ ∂h(x) andx′ ∈ IRn such that

g(x′) < r + 〈x∗, x′ − x〉 . (3.7)

What about such anx? Firstly,g(x) − h(x) ≤ r − h(x) = g(x̄) − h(x̄), that is
f (x) ≤ f (x̄). Secondly,∂h(x) is not included in∂g(x). Indeed, in the opposite
case, we would have

g(x′) ≥ g(x)+ 〈x∗, x′ − x〉
≥ r + 〈x∗, x′ − x〉 ,

which contradicts (3.7). 2

3.3. REVERSE CONVEX MINIMIZATION

The third class of ‘convex-anticonvex’ optimization problems we treat of is the
following one:

(P3) Minimize f (x) subject tog(x) ≥ 0,

where bothf andg are convex functions (these are the so-calledreverse convex
minimizationproblems). For the feasible candidate pointx̄ we are considering, we
assume throughout this subsection the following:

(H)


• The constraint set in(P3) is nonempty

and is not the whole space.
• −∞ 6 inf

IRn
f (x) < f (x̄).

As consequences of(H), the boundary of the constraint set in(P3) is
{x ∈ IRn | g(x) = 0} and the candidates̄x for being global minimizers in(P3) have
to be looked for there.
As for the two previous ‘convex-anticonvex’ optimization problems (section 3.2),
there are two types of conditions for global optimality in(P3): those using theε-
subdifferential off andg at x̄, and those appealing to the subdifferential off at
all feasible points at the same level asx̄.
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THEOREM 3.5 Let x̄ satisfyg(x̄) = 0. Thenx̄ is a global minimizer in(P3) if
and only if:

∂εg(x̄) ⊂
⋃
α≥0

∂ε(αf )(x̄) for all ε > 0. (3.8)

Proof.LetC := {x∈ IRn|f (x)≤f (x̄)}. Since there existsx0 such thatf (x0) <

f (x̄) (Slater’s assumption for the representation above ofC as an inequality con-
straint), the setNε(C, x̄) of ε-normal directions toC at x̄ can be expressed via the
ε-subdifferentials off at x̄:

Nε(C, x̄) =
⋃
α≥0

∂ε(αf )(x̄)

[14, Corollary 3.6.2 of Chapter XI]. So, what (3.8) says is

∂εg(x̄) ⊂ Nε(C, x̄) for all ε > 0. (3.8′)

Let us, therefore, prove thatx̄ satisfyingg(x̄) = 0 is a global minimizer in(P3) if
and only if (3.8′) holds true.

The global minimality ofx̄ in (P3) is expressed by the inclusion

{x | f (x) < f (x̄)} ⊂ {x | g(x) < g(x̄) = 0} . (3.9)

But, with the assumption(H), (3.9) is equivalent to

(C =) {x |f (x) ≤ f (x̄)} ⊂ {x | g(x) ≤ g(x̄) = 0} (3.10)

[14, Proposition 1.3.3 of Chapter VI]. Now, what (3.10) says is thatx̄ is a global
maximizer ofg onC. It then remains to call (3.2). 2

REMARK 3.6 Whenα > 0, ∂ε(αf )(x̄) = α∂ ε
α
f (x̄). Also, whenf is bounded

from below,inf
IRn
f (x) > −∞, then0 (which is the only element in∂ε(αf )(x̄) for

α = 0) is contained inα∂ ε
α
f (x̄) for someα > 0. Whence, in that case, the right-

hand side of(3.8) is
⋃
α>0

α∂ ε
α
f (x̄).

REMARK 3.7 The limiting caseε ↓ 0 in (3.8) is

∂g(x̄) ⊂ IR+∂f (x̄), (3.11)

which is the classical necessary condition satisfied by a local minimizer in(P3).

The second type of conditions for global optimality in(P3) are ‘à la Streka-
lovsky’; what we present below is a simplified form (statements and proofs) of
[24, Theorems 1 and 2].
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THEOREM 3.8 Let x̄ satisfyg(x̄) = 0.

(a) If x̄ is a global minimizer in(P3), then

∂g(x) ⊂ IR+∂f (x) for all x satisfyingg(x) = 0 andf (x) = f (x̄).
(3.12)

(b) LetC denote{x | f (x) ≤ f (x̄)}. If x̄ is not a global minimizer in(P3),
there then existsx ∈ C satisfyingg(x) = 0 for which∂g(x) is not included in
N(C, x).

Proof.Only (b) needs a proof. As in the proof of Theorem 3.5, the global min-
imality of x̄ in (P3) is expressed (under(H)) as:x̄ is a global maximizer ofg on
C = {x | f (x) ≤ f (x̄)}. It then remains to call Theorem 3.2. 2

4. Quadratic-quadratic optimization

By quadratic-quadratic optimization we mean optimization problems where all the
data functions (objective, equality and/or inequality constraints) are quadratic. In
short, we consider the following format:

(P)


Minimize f (x) := 1

2 〈A0x, x〉 + 〈b0, x〉 + c0

subject to
hi(x) := 1

2 〈Aix, x〉 + 〈bi, x〉 + ci = 0 for i = 1, . . . ,m
gj (x) := 1

2

〈
Ajx, x

〉 + 〈bj , x〉+ cj ≤ 0 for j = m+ 1, . . . , p ,

where all theAi aren-by-n symmetric matrices, thebi are vectors in IRn, and the
ci are real numbers. The objective functionf in (P) is not assumed to be convex
(i.e.A0 is not necessarily positive semidefinite) and, contrary to what is supposed
in what is usually called quadratic optimization, the constraint set in(P) is not
a convex polyhedron (it may even be disconnected). Many optimization problems
are modelledab initio as quadratic-quadratic ones and the model(P) turns out
to be fairly general [7, Section 8]; as a consequence there is no hope to derive
characterizations of global solutions of(P) in all possible cases. There actually are
two well-understood situations:

– When(P) is convex, i.e. when:A0 is positive semidefinite, only inequality
constrains occur withAj positive semidefinite for allj .

– When there is onlyoneconstraint (equality or inequality) in(P).

The first situation falls in the area ofconvex minimizationwe let aside here. The
second situation, we are going to examine in more details below, developed from
the so-calledtrust region optimization problems. We begin by summarizing the
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latest developments concerning this model (from the point of view of optimality
conditions). The trust region optimization problem is formulated as follows:

(P1)

 Minimize f (x) := 1
2 〈A0x〉 + 〈b0, x〉 + c0

overC := {x ∈ IRn | ‖x‖ ≤ δ}
(or overS := {x ∈ IRn | ‖x‖ = δ} ).

A slightly more general situation is when the constraint set is ellipsoidal instead
of a ball or spherical as above, but the gist of the problem is in(P). In pioneering
works, D.M. Gay and D.C. Sorensen (1981, 1982) derived characterizations of
solutions of(P1), i.e. necessary and sufficient conditions forx̄ being a global
minimizer off overC. Since then:

– Flippo and Jansen [6] observed that this nonconvex problem is in a sense
equivalent to a convex problem of the same type from which known necessary
and sufficient conditions for optimality follow.

– The hidden convexity of(P1) was confirmed by Pham Dinh Tao and Le
Thi Hoai An [21] by showing there is no duality gap between(P1) and the
associated dual optimization problem.

– Martinez [17] clarified the difference between local and global solutions of
(P1) by showing there is at most one local-nonglobal minimizer for(P1).

For more details on trust region optimization problems(P1), peruse Section 1.1 in
[22].

Until now the constraint set in(P1) is convex, which explains why an alteration
of the objective functionf (by addingα ‖.‖2 with α large enough) renders the prob-
lem convex. What if the quadratic function defining the constraint set in(P1) (in
an equality or inequality form) is not convex? We then are faced with a genuinely
nonconvexoptimization problem. Surprisingly enough, the characterizations of the
Gay–Sorensen type extend to that case. Such results were proposed by Moré [19]
and, for different but related formulations, by Stern and Wolkowicz [23]. Consider:

(P2)


Minimize f (x) := 1

2
〈A0x, x〉 + 〈b0, x〉 + c0

subject to

h(x) := 1

2
〈A1x, x〉 + 〈b1, x〉 + c1 = 0.

THEOREM 4.1 [19, p. 195].Assume thatA1 6= 0 and that

−∞ ≤ inf
IRn
h(x) < 0< sup

IRn
h(x) ≤ +∞. (4.1)

Thenx̄ satisfyingh(x̄) = 0 is a global minimizer of problem(P2) if and only if
there is a multiplierλ̄ ∈ IR such that:

(α) (A0+ λ̄A1)x̄ + b0+ λ̄b1 = 0;
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(β) A0+ λ̄A1 is positive semidefinite.

So, just adding condition(β) to the classical Lagrange conditions for optimality(α)
gives us a way of characterizing global solutions in(P2). An instance of problem
(P2) is determining the points in the hypersurface of equationh(x) = 0 which
are closest to a given pointa ∈ IRn. We illustrate Theorem 4.1 with a very simple
example of this kind.

EXAMPLE 4.2 Find the closest points ofa := (1,0) in the set of(x1, x2) ∈ IR2

satisfyingx2
1 − rx2

2 −4= 0 (wherer > 0). We therefore have to minimize globally
f (x1, x2) := (x1− 1)2+ x2

2 subject tox2
1 − x2

2 −4= 0. Two points are candidates
since they satisfy the Lagrange conditions(α):

(2,0) with the multiplier−1/2;
(−2,0) with the multiplier−3/2.

Only the first point(2,0) satisfies condition(β); we knew it was the only solution
of our problem.

It is interesting to note that the usual trick which transforms an optimization
problem (in IRn) with p inequality constraints into an optimization problem (in
IRn × IRp) with p equality constraints by adding slack variablesyi preserves the
quadraticcharacter of the optimization problem. Hence, if we consider:

(P3)


Minimize f (x) := 1

2
〈A0x, x〉 + 〈b0, x〉 + c0

subject to

g(x) := 1

2
〈A1x, x〉 + 〈b1, x〉 + c1 ≤ 0,

(P3) is equivalent to that of minimizing

(x, y) ∈ IRn × IR 7→ f̂ (x, y) := f (x)
subject to

ĥ(x, y) := g(x)+ y2 = 0.

Thus, Theorem 4.1 has a counterpart for(P3).

THEOREM 4.3 [19, p. 199].Assume thatA1 6= 0 and that

−∞ ≤ inf
IRn
g(x) < 0. (4.2)

Thenx̄ satisfyingg(x̄) ≤ 0 is a global minimizer of problem(P3) if and only if
there is a multiplierµ̄ ≥ 0 such that:
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(α)′ (A0+ µ̄A1)x̄ + b0+ µ̄b1 = 0; (α)′′ µ̄g(x̄) = 0;

(β)′ A0+ µ̄A1 is positive semidefinite.

EXAMPLE 4.4 Find the closest point ofa := (1,0) in the set of(x1, x2) ∈ IR2

satisfyingx2
1 + 4x2

2 − 4≥ 0 (the constraint set is thus the complement of a convex
elliptic set). Four points are candidate since they satisfy the Karush–Kuhn–Tucker
conditions for optimality(α)′ and(α)′′:

(2,0) with the multiplier1/2; (−2,0) with the multiplier3/2;(
4

3
,±
√

5

3

)
with the multiplier1.

Condition (β)′ is not satisfied at(±2,0), but is satisfied at the two other points(
4

3
,±
√

5

3

)
: these last two points are the solutions of our problem.

Let us now go back to the general quadratic-quadratic minimization problem(P):
what if there areseveralquadratic constraints? The situation is not as nice as when
only one quadratic constraint were present; it has been explored by Yuan [26] for
the case where(P) hastwo convexquadratic inequality constraints and by Peng and
Yuan [20] when(P) hastwo (general) quadratic inequality constraints. Roughly
speaking the situation is as follows:

– There is a gap between necessary conditions for global optimality and suffi-
cient conditions for global optimality: the necessary conditions assert that the
Hessian of the Lagrangian hasat most one strictly negative eigenvalue; the
sufficient conditions require that the Hessian of the Lagrangian be positive
semidefinite.

– Even if they are stronger than the standard second-order necessary conditions
for optimality, the necessary conditions we refer to above are not sufficient for
optimality.

– Examples and counterexamples show the variety of situations and the fun-
damental differences with the case where only one quadratic constraint was
present.
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Here is the kind of results obtained for

(P4)



Minimize f (x) := 1

2
〈A0x, x〉 + 〈b0, x〉 + c0

subject to

g1(x) := 1

2
〈A1x, x〉 + 〈b1, x〉 + c1 ≤ 0

and

g2(x) := 1

2
〈A2x, x〉 + 〈b2, x〉 + c2 ≤ 0.

THEOREM 4.5 [20, p. 589].Let x̄ be a global minimizer of(P4) satisfyingg1(x̄)

= g2(x̄) = 0. Assume that the gradients∇g1(x̄) and∇g2(x̄) are linearly indepen-
dent. There then exist unique multipliersµ̄1 ≥ 0 andµ̄2 ≥ 0 such that:

(α)′′′ ∇f (x̄)+ µ̄1∇g1(x̄)+ µ̄2∇g2(x̄) = 0;
(β)′′′ A0+ µ̄1A1+ µ̄2A2 has at most one strictly negative eigenvalue.

If only one constraint is active atx̄, sayg1(x̄) = 0 and g2(x̄) < 0, and if∇g1(x̄) 6=
0, there still existsµ̄1 ≥ 0 such that:∇f (x̄) + µ̄1∇g1(x̄) = 0 andA0 + µ̄1A1

has at most one strictly negative eigenvalue. But this result directly follows from
standard second-order necessary conditions for (local) optimality and does not have
the strength of Theorem 4.5.

By just using second order developments (which areexactfor quadratic func-
tions), the following sufficient condition for global optimality is derived.

THEOREM 4.6 Let x̄ satisfy g1(x̄) ≤ 0 and g2(x̄) ≤ 0. Assume there exist
multipliers µ̄1 ≥ 0 andµ̄2 ≥ 0 such that:

∇f (x̄)+ µ̄1∇g1(x̄)+ µ̄2∇g2(x̄) = 0,
µ̄1g1(x̄) = µ̄2g2(x̄) = 0;

A0+ µ̄1A1+ µ̄2A2 is positive semidefinite.

Thenx̄ is a global minimizer of(P4).

The gap between necessary conditions and sufficient conditions for optimality in
(P4) is illustrated by the next example.

EXAMPLE 4.7 (corrected from [20, p. 591]). Consider the following problem of
the(P4)-type inIR3:

Minimize(x1− 1)2+ x2
2 − 6x2 − 10x2

3
subject to
x2

1 + x2
2 + x2

3 − 2≤ 0,
(x1− 2)2+ x2

2 + x2
3 − 2≤ 0.

The necessary conditions exhibited in Theorem 4.5 are indeed satisfied atx̄ =
(1,1,0) with µ̄1 = µ̄2 = 1; the Hessian of the Lagrangian function isdiag
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(6,6,-16)which has one strictly negative eigenvalue. Butx̄ is not a minimizer (not
even a local one) sinced/dεf (xε) < 0 at ε = 0, if xε := (1,1− ε,√ε(2− ε)).
The reason why everything goes nicely when there is only one constraint in the
quadratic-quadratic optimization problem(P) and why the same is not expected
when there are several constraints can be explained to a great extent via the duality
theory (in [19, Section 5] in a hidden form, in [5, Chapter 3]), but we must admit
additional efforts are necessary to clear this matter up.
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